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Abstract

This paper presents a survey of the estimation methods available to measure
the effect of a health events on an outcome variable. We review the most widespread
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Introduction

Human capital fully relies on health (Grossman, 1972). Therefore it is important to
evaluate the consequences of health variations on the labour market performances.
For a long period of time, many labour market studies have ignored health issues so
that health was the missing variable, a source of “unobservable" individual variations
in the labour market variables. Recently more data have been made available. First,
one can find rather easily survey data, with many variables on health and some on
labour. Most of them are declarative. Second, more recently, administrative data have
been made available to the researchers. They are not declarative and thus offer a better
measurement of some diseases. They also have a systematic time dimension because
they are collected by the administration for its own purpose (e.g., reimbursement of
health expenditures.). This opens the way to panel data analysis. This chapter presents
the most common methods used for evaluating the effect of a health event (illness,
accident) on outcome variables, like participation in the labour market.

1 The Rubin approach

We wish to estimate the effect of a health event on a labour market outcome, using the
Rubin causal model framework (Rubin, 1974). In statistical terms, the health event will
in fact be called a “treatment". Since our treatment is dichotomous, the outcome can
take on two values Y (0) when no health event happened, and Y (1) when it did. We
observe the following value:

Y = (1−W )×Y (0)+W ×Y (1) =
{

Y(0) if W=0
Y(1) if W=1

Therefore, we have an observational problem. We only observe one of the two poten-
tial outcomes at a time. From the data, we would like to infer one of the following
quantities:

• E(Y (1)−Y (0)), the average treatment effect (ATE);

• E(Y (1)−Y (0)|W = 1), the average effect of the treatment on the treated (ATT).
It is the treatment effect evaluation, since it refers to the population who was
actually treated. It is also the most commonly used.

• E(Y (1)−Y (0)|W = 0), the average effect of the treatment on the not-treated (ATN).
This effect represents a prospective evaluation, since it tries to evaluate what
would have happened to the population who did not get the treatment.

There are many ways to estimate these effects. We will consider the most widespread
methods in this chapter.

Originally, the goal was to estimate the effect of a treatment on a given popula-
tion. Ideally, we would like to have experimental data. The people would be given
the treatment at random. The people in the treatment group would be compared to
the people in the placebo group or control group. The randomness of the selection is
here to ensure that, on a large enough sample, the distribution of both observable an
unobservable characteristics are similar in the two samples. There would remain two
sources of differences: treatment and outcomes.1

1On the method adapted to randomized experiments, see the part II of Imbens and Rubin (2015).
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Unfortunately, it is not always possible to collect experimental data in the social
sciences. Consider health events, like accidents or chronic illnesses. The social science
researcher can obviously not deliberately cause a car accident to someone or inoculate
a disease to a given worker. There is no other choice than to work with observational
data. More and more, health insurance data includes decades of information about
large samples of individuals. We will observe a health event and labour market out-
comes at the same time.

Unfortunately, we cannot compare the people with and without accidents directly,
at least because of differences in the confounding variables. These variables are related
both to the health events and to the labour market outcomes. Consider gender: women
and men do not have the same illnesses and do not have the same participation in the
labour market when they are not ill. By comparing two data sets with and without
health events, the outcome variables may differ because these data sets have different
proportions of women, and not only because of differences in health status. Two other
typical confounding variables are the age and the education level. Some disease, like
cancers, will occur more often in an older population and the education level is also
associated with different behaviours towards risks. Therefore, when we compare the
treated and the control groups, the differences may stem from both the confounding
variables and the treatment.

A related issue is unobservable heterogeneity, which is considered when panel data
are available. Non observable characteristics, like genetics or the childhood living con-
ditions, may be related to the occurrence of some diseases or accidents and, at the
same time, influence the outcome in the labour market. If the sample really is random,
these characteristics should be balanced in the treated and control groups. Otherwise,
bias reducing techniques should be used.

Consider the following mean difference, which has an observable counterpart:

E(Y (1)|W = 1)−E(Y (0)|W = 0)︸ ︷︷ ︸
Average outcome difference

= E(Y (1)|W = 1)−E(Y (0)|W = 1)︸ ︷︷ ︸
ATT

+E(Y (0)|W = 1)−E(Y (0)|W = 0)︸ ︷︷ ︸
Selection bias

The left hand gives the mean outcome difference in the two groups. The right-hand
gives the sum of two terms. Firstly, what we are looking for, the ATT, and, secondly,
an additional term which is the mean outcome difference in the absence of treatment
Y (0) between the treated group W = 1 and the control group W = 0. This term comes
from a group selection difference (treated or not) and is termed a selection bias, be-
cause it impeaches to use the mean difference as a valid ATT estimator from observa-
tional data. With experimental data, we would not have this problem because, by def-
inition, the distribution of the outcomes would be the same in the two groups, so that
the selection bias cancels. We could use the outcomes of the not-treated to estimate
what would have happened to the treated if they had not been treated. Statistically, it
corresponds to the assumption:

Y (0) ⊥⊥W.

This assumption may be too strong for observational data, we need a weaker assump-
tion. When observational data are available, it is still possible to estimate the effect of
the treatment on the treated (ATT) with the following conditional independence as-
sumption:

CIA-0: Y (0) ⊥⊥W |X (1)
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This assumption means that, given X , the people in the two groups would reach the
same outcome in the absence of treatment Y (0). Consider participation in the labour
market so that X includes age, gender and the education level. People with the same
age, gender and education should reach comparable outcomes on average in the labour
market in the absence of treatment (here, in the absence of disease). When this as-
sumption holds, it is possible to use the data about the people in the control group
for inferring what would have happened to the treated in the absence of treatment.
We do this because it is not possible to observe the outcome of the treated when they
are not treated. The credibility of the CIA-0 depends on the data available. The basic
ingredient of our estimators will be the conditional mean outcome difference:

c(x) = E(Y (1)|W = 1, X = x)−E(Y (0)|W = 0, X = x)

= E(Y |W = 1, X = x)−E(Y |W = 0, X = x) .

The second line in the previous expression states that c(x) has an empirical counter-
part, since Y is always observable. Now, consider the estimation of the ATT. We let:

c1(x) = E(Y (1)−Y (0)|W = 1, X = x)

and we can rewrite the ATT:

c1 = E(c1(X )) =
∫

E(c1(x))dPX |W =1(x).

where P denotes the cdf of X |W = 1. When X is continuous we get:∫
c1(x)p(x|W = 1)dx

where p is the density of X |W = 1, and when X is discrete, we get:∑
x

c1(x)Pr(x|W = 1),

where Pr(x|W = 1) is the probability that X = x among the treated. This simply means
that one can compute the ATT in two steps. First, we compute the average outcome
differences c(x) for each group of individuals X = x. Second, we average the averages
according to the distribution of X in the treated group W = 1. We can write:

c1 = E(c1(X ))

= E(E(Y (1)|X ,W = 1)−E(Y (0)|X ,W = 1)) ,

assuming that CIA-0 holds:

E(Y (0)|X ,W = 1) = E(Y (0)|X ,W = 0) ⇒ c1(x) = c(x),∀x

and we get the following expression, which has an empirical counterpart:

c1 = E(c(X )) .

Overall, the CIA-0 assumption opens the possibility to use some outcomes of the con-
trol group in order to estimate the average outcome of the treated if they had not been
treated. This will justify the following method: set a value of X = x, compute the av-
erage of Y (1) in the treated group with X = x, the average of Y (0) in the control group
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with the same value X = x and take their difference c(x). Then aggregate these dif-
ferences according to the distribution of X in the treatment group in order to get the
ATT.

This method implies the following additional assumption: there must be both treated
and controls for all the values of X = x. This is a common support hypothesis. Notice
that it can fail if some people are excluded from the treatment group for specific values
of X .

The estimation of the ATN is similar to the ATT. One just need to define the absence
of treatment as the treatment and proceed as before. The ATN is defined by:

c0 = E(c0(X ))

with

c0(x) = E(Y (1)−Y (0)|W = 0, X = x)

The identifying assumption becomes:

CIA-1: Y (1) ⊥⊥W |X (2)

therefore, we will be able to use the data of the treated to estimate the outcome the
controls would have had if they had been treated. Under CIA-1, we get the conditional
effect c0(x) = c(x),∀x, so that:

c0 = E(c0(X )) =
∫

c(x)dPX |W =0(x).

We also use c(x) but with a different weighting distribution than in the ATT case.
Also notice that we implicitly assume that we can find treated individuals with the
same values of X than the not-treated, all along the distribution of X |W = 0. Last,
we can estimate the Average Treatment Effect (ATE), c2, by assuming:

CIA-2: Y (0),Y (1) ⊥⊥W |X (3)

It is the most demanding assumption and one may well question which of the three
effects is the most relevant in order to avoid useless assumptions. The ATE uses the
marginal distribution of X :

c2 = E(c(X )) =
∫

c(x)dPX (x).

2 Cross-section estimation

2.1 Matching

We will first consider multidimensional matching methods. Health and labour often
include categorical variables and few continuous variables, so that we will consider ex-
act matching and calliper matching. When these methods are not applicable, propen-
sity score matching may be welcome.
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Exact matching. Consider the estimation of the treatment effects. All the individuals
in the data set have an identification variable. The levels of this variable allow to form
index sets of treated and controls. IW will denote the index set in the treatment group
W , and I W the number of elements in IW . By convention, we will let W = 0 denote the
control group, W = 1 denote the treated group and W = 2 denote all the individuals in
the data set (W = 0 and W = 1). Therefore we have I2 = I0 ∪ I1 and I 2 = I 0 + I 1, because
an individual cannot be in the treated group and in the control group at the same time.
Each index set defines a treatment effect: the ATT relies on the distribution of X in I1,
the ATN in I0 and the ATE in I2.

We take the estimation of the ATT as an example. The derivations of the other esti-
mators are similar and we will just give the associated results. The treated are identified
by their index i ∈ I1. For each value of i , we have twins in the control group, who share
the same value of the matching variables. With exact matching, we can define the twins
of the treated i by a matching function giving directly the index set of the twins M. Let
Xi be the matching variables for the treated i , the index set of the twins is denoted
M(Xi ) or, shortly M(i ):

M(i ) = { j ∈ I0 : X j = Xi }, i ∈ I1

Similarly, we can apply this matching function to a whole set of individuals, so that
M(I 1) is the twin set of all the treated. By convention, M will denote the number of
elements in M. The estimator of the ATT is defined by:

ĉ1 = 1

I 1

∑
i∈I1

(
Yi − 1

M(i )

∑
j∈M(i )

Y j

)
.

With a perfect matching, the values of X define groups of treated and controls
and we can decompose the previous difference according to the values of X . With
categorical data, there will be a finite number of groups. In order to use the CIA-0
condition, we will partition the treated set I1 according to the values of X , into G1

groups. Matching is straightforward for categorical data. Each realisation of X can
be interpreted as a sorting key that defines groups of data. Consider gender (2 levels,
1 and 2) and education (3 levels, 1, 2 and 3), we can define 6 groups from this data
G1 = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)}. We can index the groups by g ∈ G1 and let
G1 = 6 denotes the number of groups. Inside each group g there are I 1

g treated and

M(I1
g ) controls. We let:

I1 = ⋃
g∈G1

I1
g and I1

g ∩ I1
g ′ =; ∀g 6= g ′

so that:

ĉ1 = 1

I 1

∑
g∈G1

∑
i∈I1

g

(
Yi − 1

M(i )

∑
j∈M(i )

Y j

)

The first term of the difference is proportional to the mean of the outcome variable in
the treatment group g denoted (Ȳ 1

g ):∑
i∈I1

g

Yi = I 1
g ×

1

I 1
g

∑
i∈I1

g

Yi = I 1
g × Ȳ 1

g .
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For the second term, consider that inside each set I1
g the control group M(i ) does not

depend on i because all the treated i have the same value of X and, therefore, exactly
the same twins. We can set M(i ) = M(I1

g ) ∀i ∈ I1
g and the second term in the sum is

simply the mean of the outcome variable in the control group g , denoted Ȳ 0
g :

1

M(i )

∑
j∈M(i )

Y j = 1

M(I1
g )

∑
j∈M(I1

g )

Y j = Ȳ 0
g

which implies that:

∑
g∈G1

1

M(i )

∑
j∈M(i )

Y j = I 1
g × Ȳ 0

g

and we estimate the ATT by:

ĉ1 =
∑

g∈G1

I 1
g

I 1

(
Ȳ 1

g − Ȳ 0
g

)
= ∑

g∈G1

ω1
g

(
Ȳ 1

g − Ȳ 0
g

)
with ω1

g = I 1
g /I 1. Notice that ω1

g is simply the proportion of treated that lies in the I1
g

set, that is the empirical distribution of X |W = 1. It is easily checked that 0 < ω1
g < 1

and
∑

g ω
1
g = 1.

This presentation strongly simplifies the computation of the variance for the fol-
lowing reasons (Barnay et al., 2019). First, by construction, there is no individual in
common between different I1

g sets and this property extends to the twins because the
matching is perfect. Second, by definition, there is no intersection between the treated
and the control sets (one individual is treated or not). This implies that:

V(ĉ1) =
∑

g∈G1

V
(
ω1

g

(
Ȳ 1

g − Ȳ 0
g

))
= ∑

g∈G1

(ω1
g )2

(
V

(
Ȳ 1

g

)
+V

(
Ȳ 0

g

))
The same principles can be used for the two other effects. The ATN is identified

under the conditional independence assumptions CIA-1 (2) and the ATE is identified
under CIA-2 (3). Notice that the support of X differs for each estimator: X |W = 1 for
the ATT, X |W = 0 for the ATN and X for the ATE. We get the following estimates of the
three effects:

ĉW = ∑
g∈GW

ωW
g

(
Ȳ 1

g − Ȳ 0
g

)
, W = 0,1,2

with ωW
g = I W

g /I W . The variance equals:

V(ĉW ) =
∑

g∈GW

(ωW
g )2

(
V

(
Ȳ 1

g

)
+V

(
Ȳ 0

g

))
,
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and we use the following unbiased estimators (W = 0,1) for the variances of the means:

V̂
(
Ȳ W

g

)
= 1

(I W
g −1)I W

g

∑
i∈IW

g

(
Yi − Ȳ W

g

)2
.

There are two sources of difference between these estimators:

1. The support of the matching variables, which defines the matching rates. Each
estimator potentially relies on a different distribution of the confounding vari-
ables X . One may check directly the variations in this distribution when com-
paring the effects. Notice, that we must find enough individuals in the counter-
factual group for the computation to make sense.

2. The weightsωW
g used in the computation, for a given support. These weights can

vary strongly when X includes determinants of the treatment variable, because
the treatment is not allocated at random between the individuals.

Continuous variables. The CIA assumptions may hold for continuous variables too
and perfect matching may be impossible because there are too few observations in the
data set. This will obviously raise the problem of the matching rate. For the ATT, it is
the proportion of treated who can be matched. In order to fix this problem, we need
to adapt the matching method. Among them, we could use coarsened exact matching,
calliper matching, nearest neighbour matching or propensity score matching. In all
these cases, we should care about the matching rate because it indicates the fulfilment
degree of the common support condition. One important decision to take is whether
we use a twin only once or several times (i.e. for several treated). Obviously, drawing
will replacement will always make more twins available, increase the matching rate
and reduces bias. But the variance will be bigger and more difficult to compute. Draw-
ing without replacement makes the computations easier but if the twins are scarce,
some treated cannot be matched, and the ones who are matched may belong to a non
representative set. The trade-off is clearly related to the size of the data set. With a very
large reservoir of controls, drawing without replacement will not be a problem because
all the treated can be matched with several twins. But if the data set is smaller, draw-
ing with replacement may be the only relevant option. In this case, matching everyone
with all the available twins may be the only way to avoid biases. Also notice that the
availability of panel data may easier matching for the following reason: one may match
the treated with both the people who are never treated and with the ones who will be
treated at a later date. This increases the number of available matches.

Several adaptations are possible: coarsened exact matching, calliper matching or
nearest neighbour matching. Coarsened exact matching simply transforms continu-
ous variables into categorical ones by taking intervals. Exact matching is applied after-
wards to the new categorical variables. Calliper matching is more interesting because
it sets a maximum distance for the matching. The difference between the two methods
is important. Consider a matching on age. With a coarsened exact matching we would
define intervals like 16-29, 30-49 and 50+. This implies that someone aged 30 will be
matched with someone aged 49, 19 years of age difference, but not with someone age
29 while there is only one year of age difference. With calliper matching one sets the
difference explicitly like, say, 3 years. Someone aged 30 will be matched with people in
the 27-33 range, which looks much better than with intervals.
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Calliper matching. When matching variables include continuous variables, it is not
possible to perform exact matching anymore. But one can set a tolerance margin for
the continuous variable. This margin is called a calliper. For example, if we study the
effect of cancer on employment participation, we may tolerate a difference of, say, 3
years between the treated and the controls. It could be justified by the fact that, on the
one hand, the incidence probability of cancer does not vary much in three years, as well
as the participation rate in the labour market, provided that the workers are far enough
from the legal retirement age. More generally, explicit methods should be preferred
to automatic methods, because they constrain the researcher to justify the distance
allowed between the treated and the controls. A good survey of the literature should
allow to determine a reasonable calliper for the main continuous variables. In what
follows, we take the example of one continuous variable, but the extension to several
variables is straightforward. Let X denote the matching variables. We will separate the
discrete variables D from the continuous variables C , so that X = (D,C ). Considering
the discrete variables first, we get a matching reservoir M(i ):

M(i ), { j ∈ I0 : X j = Xi }, i ∈ I1

the important point is that this reservoir does not depend on i . All the individuals
i ∈ Ig share the same reservoir M(i ) because they share the same value of the discrete
matching variables. Introducing continuous variables will restrict the part of the reser-
voir that we can use and the matching will become individual. We denote it R(i ):

R(i ),M(i )∩ { j ∈ I0 : |C j −Ci | ≤ r }.

where r > 0 is the calliper. It is simply the largest difference tolerated for a matching
on the continuous variable. By convention R(i ) denotes the number of twins for the
treated i .

The introduction of a calliper creates the following complication, when matching is
done with replacement.2 For the same value of the discrete variables the twins’ sets are
not disjoint anymore. In other words, if the calliper equals three years, the treated with
less than three years difference will have similar twins and this will create a correlation
between their performance differences. This must be accounted for both in the mean
and in the variance formulas.

In order to simplify the exposition of the ATT, we use the following matching dum-
mies, ri j = 1 when j can be matched with i :

∀ j ∈ M(i ), ri j =
{

1 if j ∈ R(i )
0 otherwise

With this definition, the number of twins for the treated i equals:

R(i ),
∑

j∈M(i )
ri j

and their mean outcome variable can be written indifferently:3

Ȳ 0
i ,

∑
j∈R(i ) Y j

R(i )
=

∑
j∈M(i ) ri j Y j∑

j∈M(i ) ri j
.

2We favour matching with replacement because it gives the highest matching rates.
3In the absence of continuous variables, all the dummies ri j = 1 and we get Ȳ0(i ) = Ȳ0, ∀i , the mean in

the control group.
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The ATT can be estimated by:

ĉ1 = 1

I 1

∑
g∈G1

∑
i∈I1

g

(
Yi − Ȳ 0

i

)
Here we should notice that, for i ∈ I1

g , we have M(i ) = I0
g so that we can rewrite the ATT

in the following way:

ĉ1 =
∑

g∈G1

ω1
g

(
Ȳ 1

g − Ỹ 0
g

)
with:

Ỹ 0
g = 1

I 0
g

∑
j∈I0

g

r̄ j Y j

with the counterfactual weights:

r̄ j ,
1

I 1
g

∑
i∈I1

g

 ri j

1

I 0
g

∑
j∈I0

g
ri j

 .

Consider some special cases. When one control j can be matched with all the treated,
we get ri j = 1 ∀i and r̄ j = 1 so that we get the exact matching case Ỹ 0

g = Ȳ 0
g . When

the control j cannot be matched with any of the treated i , we get ri j = 0 and r̄ j = 0 so
that Y j is excluded from the computation of the counterfactual. In the standard case,
the control j can be matched with a part of the treated, and its contribution to the
counterfactual will be increasing with its number of matches (i.e. the number of i such
that ri j = 1).

More generally, the effects can be written:

ĉW = ∑
g∈GW

ωW
g

(
Ȳ 1

g − Ỹ 0
g

)
, W = 0,1,2

and their variance (Duguet and Le Clainche, 2020):

V(ĉW ) =
∑

g∈GW

(ωW
g )2

(
V

(
Ȳ 1

g

)
+V

(
Ỹ 0

g

))
but now, the variance of the counterfactual must account for the fact the same con-
trols are used several times. Let us assume that the variance of the matchable twins’
outcome inside the group g is (σ0

g )2, we get:

V
(
Ỹ 0

g

)
= (σ0

g )2

∑
j∈I0

g
r̄ 2

j

(I 0
g )2

.

and one can use the following estimator:4

(σ̂0
g )2 = 1∑

j∈I0
g

rg j

∑
j∈I0

g

(
rg j Y j −

∑
j∈I0

g
rg j Y j∑

j∈I0
g

rg j

)2

where rg j = 1 if there exists i ∈ I1
g such that ri j = 1. In short, we keep the only controls

that can be matched with at least once in I1
g in order to compute the outcome variance.

4We do not use the correction for the degrees of freedom so that σ̂0
g = 0 when there is only one twin in

some subgroups g , as expected.
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Propensity score matching. Exact or even calliper matching may not be possible
when there are many continuous variables. In this situation, it is possible to reduce
the dimension of the matching problem by using the propensity score method. The
propensity score, e(X ), is the probability to get the treatment conditional of the ob-
servable variables X :

e(X ) = Pr(W = 1|X ).

Rosenbaum and Rubin (1983) showed that the following property holds for evaluating
the ATE:

(Y0,Y1) ⊥⊥W |X and 0 < e(X ) < 1, ∀X

⇒ (Y0,Y1) ⊥⊥W |e(X ) and 0 < e(X ) < 1, ∀X

For the other effects, we use:

Yk ⊥⊥W |X and 0 < e(X ) < 1, ∀X

⇒ Yk ⊥⊥W |e(X ) and 0 < e(X ) < 1, ∀X

with k = 0 for the ATT and k = 1 for the ATN.
These results open the possibility to match on the propensity score e(X ), a real

number, rather than directly on X. The intuition is the following: if two individuals
have the same probability to be treated, and one is treated while the other is not, then
the treatment may be allocated at random among them. This reduces the matching to
one dimension. Several methods may then be applied in order to estimate the causal
effects.5

The reader may however be conscious that matching on the propensity score is
inefficient compared to matching on X (Frölich, 2007), so that this method should be
used when direct matching is not feasible.

In practise, we do not observe e(X ) but an estimate ê(X ). It may be obtained by
a Logit or a Probit model. This will have consequences for the regression methods
presented later. Let W ∗ be a latent variable determining the (random) allocation to
treatment:6

W ∗
i = Xiθ+ui , i ∈ I2

where u is the disturbance of the model with cdf Fu and X includes a constant term.7

We observe the following treatment variable:

Wi =
{

1 if W ∗
i > 0

0 otherwise

which is Bernoulli distributed, with probability:

Pr[Wi = 1|Xi ] = Pr[W ∗
i > 0|Xi ]

= Pr[ui >−Xiθ]

= 1−Fu[−Xiθ]

= e(Xi ;θ).

5For a presentation of propensity score methods, see Caliendo and Kopeinig (2008) and Austin (2011).
6This section requires some knowledge in limited dependent variables and maximum likelihood estima-

tion. See Wooldridge (2002), chapter 15.
7Without loss of generality because matching is always perfect on the constant term.
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In a Probit model, this reduces to e(Xi ;θ) = Φ(Xiθ) where Fu(u) = Φ(u) is the cdf of
the standard normal distribution; in a Logit model, we get e(Xi ;θ) = Λ(Xiθ), where
Fu(u) = 1/(1+exp(−u)) is the cdf of the logistic distribution. The estimation proceeds
by maximum likelihood. The log-likelihood for one observation i is:

`i (Wi |Xi ;θ) =Wi ln(e(Xi ;θ))+ (1−Wi ) ln(1−e(Xi ;θ))

and the maximum likelihood estimator is defined as:

θ̂ = argmax
θ

∑
i∈I2

`i (Wi |Xi ;θ).

We get the estimated propensity score by:

ê(Xi ) = e(Xi ; θ̂).

From there, we can use a calliper matching, a kernel prediction of the counterfac-
tual or a regression including the propensity score.8

Common support and balancing. The propensity score should verify 0 < e(X ) < 1.
This means that no individual is excluded from the treatment, or imposed the treat-
ment. This implies that, for all values of X , there may be some randomness in the
allocation of the treatment among individuals. We have a distribution of the treatment
probability in the interval E1 = [e−1 ,e+1 ] and, similarly for the not-treated E0 = [e−0 ,e+0 ].
Generally, the distribution of the treated will be shifted to the right because the treated
tend to have higher probabilities to be treated. If we wish to estimate the ATT, we will
need to find matches for the probabilities in E1. Ideally, this requires E1 ⊆ E0. When
this property fails, we can still compute a matching rate and proceed to the estima-
tion when it remains close to 100%. Obviously, all the effects can be estimated when
E0 = E1. However, nothing guarantees that this condition holds and it should be ex-
amined carefully. Notice that taking the common support automatically, E0 ∩E1, may
cause a bias when it removes an important part of the data points. When the matching
possibility are reduced, it is recommended to turn to methods with replacement, so as
to use each match several times.

The condition Yk ⊥⊥ W |e(X ) does not imply the condition Yk ⊥⊥ W |X , which re-
mains the motivation the method. For this reason, authors have suggested to check
for covariate balancing inside subclasses of the propensity score (Imbens and Rubin
(2015), chap. 14). From a matching perspective, one should focus on the continuous
variables. Indeed, with replacement, one can always match the value of a categorical
variable if there is a least one individual in the matching reservoir. Since one can match
both on the categorical variables and the propensity score at the same time, the only
difference should come from the continuous variables.9 Rosenbaum and Rubin (1985)
propose to compute the following normalized difference for each stratum defined by
the propensity score:10

∆̂= 100× z̄1 − z̄0√
(s2

1 + s2
0)/2

8It is possible to match both on the propensity score and other variables. It may be useful for some cate-
gorical variables, like gender.

9Notice that one can include the categorical variables in the propensity score estimation, and match on
both the propensity score and the exact value of categorical variables in a later step.

10In practice, one may choose quantiles of the estimated propensity score to insure equal size strata. The
choice of the quantile should be guided by the number of observation in each stratum. On the use of the
normalized differences, see the chapters 15 and 16 of (Imbens and Rubin, 2015)
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where z̄W = (1/I W )
∑

i∈IW zi , s2
W = 1/(I W −1)

∑
i∈IW (zi − z̄W )2 and W = 0,1. This statis-

tic is different from the Student statistic, since it measures the deviation of means ex-
pressed in standard errors. The Student statistics for testing the equality of the means
is:

T̂ = z̄1 − z̄0√
s2

1/I 1 + s2
0/I 0

,

and it will increase with the sample size when the means are different, while ∆̂may not.
More generally, other differences may be examined, involving variances or a measure
of the distributions overlap, as indicated in Imbens and Rubin (2015).

Dehejia and Wahba (2002) propose an algorithm that relates the specification of the
propensity score to its capacity to ensure the balancing of the observables X . After es-
timation, the propensity score intervals are made and the Student tests are performed.
If the tests pass for all the strata, the algorithm stops. Otherwise, if a variable does
not pass the test, the authors suggest to add higher order and interaction terms in the
specification of the propensity score and run the test again.

Calliper matching on the propensity score. Let êi = ê(Xi ), then the matching set for
the individual i on the population W ∈ {0,1}:

MW
i , { j ∈ IW : |ê j − êi | ≤ r }, i ∈ I1−W

where r > 0 is the calliper. The associated counterfactual for an individual i will be:

Ȳ W
i = 1

MW
i

∑
j∈MW

i

Y j .

where MW
i denotes the number of observations in MW

i . The use of a calliper creates an
overlap between the matching sets of the individuals. The ATT will be estimated by:

ĉ1 = 1

I 1

∑
i∈I1

(
Yi − Ȳ 0

i

)
the ATN by:

ĉ0 = 1

I 0

∑
i∈I0

(
Ȳ 1

i −Yi
)

and the ATE by:

ĉ2 = 1

I 2

∑
i∈I 2

(1−Wi )
(
Ȳ 1

i −Yi
)+Wi

(
Yi − Ȳ 0

i

)= I 0

I 2 ĉ0 + I 1

I 2 ĉ1. (4)

With I 2 = I 0 + I 1, the ATE is obtained as the weighted mean of the two other treat-
ment effect estimates. The variances are more complicated to compute, so that the
bootstrap method may be used (Efron and Tibshirani, 1994).11 The sampling should
be done separately for the treated and the controls. Then, one should run the two esti-
mation steps, in order to account for the variability in the estimated propensity scores.
Notice, however, that the standard bootstrap method may fail for the nearest neigh-
bour estimators with a fixed number of matches (Abadie and Imbens, 2008).

11This estimator is similar to a kernel matching with a uniform kernel, as shown in the next section.
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Kernel estimation. Consider the estimation of the ATT. The main issue is the estima-
tion of the counterfactual:

E(Y 0|e,W = 1).

Following Heckman et al. (1997), we will treat this issue as a nonparametric prediction
problem. More precisely, we will consider that that Y 0 is a function of the propensity
score e(X ) instead of X :

Y 0 = m(e)+u

where m is an unknown function, u ⊥⊥W |e and E(u|e) = 0. We get:

E(Y 0|e,W = 1) = E(Y 0|e,W = 0).

In order to estimate this quantity, we will first restrict ourselves to the not-treated
sample (W = 0) and perform a non parametric regression of Y on the estimated propen-
sity score ê. The choice of a non-parametric regression is motivated by the will to avoid
restrictions on the function m.

In a second step, we will compute the predictions from the propensity scores in
the treated sample (W = 1). This is possible when the support condition holds for the
estimated propensity scores. For each treated i , we compute the prediction:

Ŷ 0
i = m̂(êi )

and compute the ATT in the following way:

ĉ1 = 1

I 1

∑
i∈I1

(
Yi − Ŷ 0

i

)
.

In order to compute m̂, we use the Nadaraya-Watson estimator (Nadaraya (1964),
Watson (1964)):12

m̂(ei ) = ∑
j∈I0

ω j (ei )Y j

where ω j (ei ) is the weight of the (not-treated) match j in the computation of the local
average at ei . This weight of j should be maximal when the match is perfect, ei = e j ,
and decrease with the distance from the match |ei − e j |. A relevant choice is kernel
weighting. It is defined by:

ω j (ei ) = K (zi j )∑
j∈I0 K (zi j )

where zi j = (ei −e j )/h, K is the kernel chosen and h the bandwidth parameter. This pa-
rameter is a smoothing parameter for the estimation of the m function. In the standard
cases, the kernel function is positive, symmetric around 0 and integrates to 1. It reaches
its maximum in 0, that is when ei = e j . The bandwidth parameter h is determined by

cross validation on the not-treated sample. Let ĥ be the estimated bandwidth. It is
obtained through cross-validation (Frölich, 2004):13

ĥ = argmin
h

∑
j∈I 0

(
Y j −m̂− j (ê j )

)2

12The part that follows requires some notions of nonparametric estimation, see Pagan and Ullah (1999).
13The method was originally introduced by Clark (1975).

14



where m̂− j is the kernel estimation obtained by omitting the j -th observation. Finally,
the effect of the treatment on the treated is estimated by:

ĉ1 = 1

I 1

∑
i∈I1

(
Yi −

∑
j∈I0

ω̂ j (êi )Y j

)

with

ω̂ j (êi ) = K (ẑi j )∑
j∈I0 K (ẑi j )

, ẑi j =
êi − ê j

ĥ
.

The main determinant of the weight is the propensity score difference. The weight is
strictly decreasing with this difference and may be 0 if the difference is too strong. A
widespread kernel that use all the observations is the Gaussian kernel:

K (z) = 1

h
p

2π
exp

(
− z2

2

)
, z ∈R.

There is always a match with this kernel, but it can be far. Another interesting special
case is the uniform kernel:

K (z) =
{ 1

2h
if |z| ≤ 1

0 otherwise

With the uniform kernel, the prediction reduces to a local mean of Y j values for the
ê j that falls in the interval [êi −h, êi +h]. In this case, the bandwidth parameter can be
interpreted as a calliper on the propensity score (h = r ).

The variance of the Nadaraya-Watson estimator may be estimated by the bootstrap.
In this situation, we keep the estimate obtained for the original sample, ĉ1 and use the
bootstrap repetitions in order to estimate the variance. The B draws are done sepa-
rately in the treated and not-treated samples. The resulting estimation for the boot-
strap repetition b = 1, ...,B is denoted ĉ1b and the variance is estimated by:14

V̂(ĉ1) = 1

B −1

B∑
b=1

(ĉ1b − ĉ1)2 .

Notice that the standard bootstrap method works well the for the kernel estimators
but may fail for other estimators. Abadie and Imbens (2008) showed that the bootstrap
may fail for the nearest neighbour estimators with a fixed number of matches.

The extension to the ATN is straightforward since the we can define a treatment
equal to the absence of treatment. The ATE will clearly require two non parametric
regressions instead of one. A first regression will estimate E(Y 1|W = 0) and another
one E(Y 0|W = 1), with different bandwidth parameters. Then, we should apply (4)
in order to get the estimate ĉ2, and perform bootstrap repetitions for estimating the
variance of the corresponding estimator.

2.2 Regression

Regression on the confounding variables. The first type of regression simply uses
the matching variables as regressors (Rubin (1973), Lee (2005)). Consider the following
model:

Y W =αW +XβW +uW , W = 0,1

14On the choice of the number of bootstrap repetitions, see Andrews and Buchinsky (2000).
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They represent the two potential outcomes for the same individual depending on s-he
is treated (W = 1) or not (W = 0). We observe:

Y = (1−W )×Y 0 +W ×Y 1

=α0 +Xβ0 +W (α1 −α0)+ (W X )(β1 −β0)+u

with u = (1−W )u0 +W u1. We obtain a model with the cross products W X , which we
rewrite:

Y =α+Xβ+W γ+W Xδ+u (5)

with α=α0, β=β0, γ=α1 −α0 and δ=β1 −β0. Several specific cases are of interest:

1. If the treatment is allocated at random and data are collected about Y only, we
can write the model without X :

Y =α+W γ+u,

and the OLS estimation of γwill simply give the difference of the outcome means
in the treated and control samples: γ̂= Ȳ1 − Ȳ0. This is also one of the estimators
used with experimental data.

2. The variables X have the same effect in the treatment and the control groups,
β0 =β1. Although the assumption deserves to be tested, this model is often used
in applications, without the test. We get:

Y =α+Xβ+W γ+u,

we obtain a model in which the treatment dummy W is included as a standard
additional regressor.

In these two cases however, we get a constant treatment effect in the following sense.
In the first model, we get the following ATT:

c1 = E(y1 − y0|W = 1) = γ+E(u1 −u0|W = 1).

Further assuming E(u1) = 0 and a mean independence assumption about u0, namely
E(u0|W = 0) = E(u0|W = 1), we get c1 = c. Now consider the ATN:

c0 = E(y1 − y0|W = 0) = γ+E(u1 −u0|W = 0)

and assuming E(u0) = 0 and E(u1|W = 0) = E(u1|W = 1), we get c0 = c. The reader can
check that we get the same result for the ATE by simply assuming E(u1) = E(u0). In
the three cases, the OLS will provide an estimate of γ and this method of estimation
does not allow for different values of the average treatment effects in the treated and
the control groups. Adding the explanatory variables X does not change this property
since their effect is the same whatever W is.

The only way to allow for different estimations of the three treatment effects is to
include the cross products W X in the regression. In model (5) we get, under the rele-
vant mean independence assumptions:

c0 = γ+E(X |W = 0)δ,

c1 = γ+E(X |W = 1)δ,

c2 = γ+E(X )δ.
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Different conditional distributions for X will give different evaluations. Letting
(γ̂, δ̂) be the OLS estimator of (γ,δ) and X̄W be the vector of sample means for the
samples defined by W = 0,1,2, we can use the following estimators:

ATN: ĉ0 = γ̂+ X̄0δ̂,

ATT: ĉ1 = γ̂+ X̄1δ̂,

ATE: ĉ2 = γ̂+ X̄2δ̂.

with

X̄W = 1

I W

∑
i∈I W

Xi .

But this way to present the problem does not lead to the simplest expression of the
variance of these estimators, since X̄W and (γ̂, δ̂) are correlated. For getting the vari-
ances directly from the OLS output, it is better to center the X variables before to take
the cross products. Here it is important to notice that the mean used in the centering
depends on the effect we wish to estimate. For the effect ĉW , we use X̄W , with W = 0,1,2
. We rewrite the model (5) under the equivalent formulation:

y =α+Xβ+W γW +W (X − X̄W )δ+u

with γW = γ+ X̄W δ. Notice that the definition of γW changes with the mean used in
the centring. The estimates will now be obtained with:

cW = γW +E(X − X̄W |W )δ

which can be estimated by:

ĉW = γ̂W + 1

I W

∑
i∈I W

(Xi − X̄W )

= γ̂W .

and we can use the OLS variance of ĉW . Here, one may remark that the structure of
the disturbance u = (1−W )u0+W u1 suggests a heteroskedasticity correction since the
error term differs in the treated and control groups (see White (1980)).

Regression on the propensity score. When there are many variables, it may be easier
to perform a regression on the propensity score. The implementation is simple: in a
first step, one estimates the propensity score ê(X ) and, in a second step, one uses ê(X )
instead of X . All the previous methods can be used. The model is (Rosenbaum and
Rubin, 1985):

YW =αW +βW e(X )+uW , W = 0,1

and we would like to estimate:

y =α+e(X )β+W γW +W (e(X )−e(X )W )δ+u

in order to get ĉW = γ̂W . Notice that e(X )W is the mean of the propensity scores in
group W . Unfortunately, we cannot observe e(X ) and we use an estimate of it instead,
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denoted ê(X ). This is called a generated regressor in the literature. The regression
becomes:

y = d0 +d1W W +d2ê(X )+d3W (ê(X )− ê(X )W )+ v.

The OLS estimation d̂1W will still provide a consistent estimator of cW , but the
OLS standard errors are wrong. One important point to notice is that the usual het-
eroskedasticity corrections are not a good approach to this problem. A specific cor-
rection must be made.15 Our presentation follows the general case of Murphy and
Topel (2002). Separating the standard regressors (Z1) from the generated ones (Z2), we
rewrite the model under the form:

yi = Z1iδ1 +Z2iδ2 + v, i ∈ I2.

with

Z1i = (1,Wi ),

Z2i = f (Xi ; θ̂), (êi ,Wi (êi − êi W )),

êi = e(Xi ; θ̂),

δ1 = (d0,d1W )′, δ2 = (d2,d3)′,

vi = ui + f (Xi ;θ)− f (Xi ; θ̂).

Letting:

Z = (Z1, Z2) and δ=
(
δ1

δ2

)
the OLS estimator is given by:

δ̂= (
Z ′Z

)−1 Z ′y

and its asymptotic variance is deduced from:

avar
(√

I2(δ̂−δ
)
=σ2Q−1

0

+Q−1
0

(
Q1 J−1

1 Q ′
1 −Q1 J−1

1 Q ′
2 −Q2 J−1

1 Q ′
1

)
Q−1

0

with the empirical counterparts:

σ̂2 = 1

I2

∑
i∈I2

v̂2
i ,

v̂i = yi −Zi δ̂,

Q̂0 = 1

I2

∑
i∈I2

Z ′
i Zi ,

Q̂1 = 1

I2

∑
i∈I2

Z ′
i
∂ f

∂θ
(Xi ; θ̂)δ̂2,

Q̂2 = 1

I2

∑
i∈I2

Z ′
i v̂i

∂`i

∂θ
(Xi ; θ̂),

Ĵ1 =− 1

I2

∑
i∈I2

∂2`i

∂θ∂θ′
(Xi ; θ̂).

15This issue was originally addressed by Pagan (1984). For a more detailed treatment, see the sections 6.1
and 12.4 of Wooldridge (2002).
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The first term σ2Q−1
0 corresponds to the usual OLS variance (under homoskedas-

ticity). The other terms represent the bias of the OLS variance. It can have any sign, so
that the OLS estimation can overestimate or underestimate the true standard errors.

3 Panel data estimation

3.1 Data structure

Treatment group. We consider a panel data with maximum of T years and I2 indi-
viduals. The panel is unbalanced, so that the individuals can enter or exit the panel at
any time t = 1, . . . ,T . We assume that the data is missing at random. Compared to the
cross-section case, the treatment will now be identified by its date of appearance, so
that the sample of treated varies over time. In order to simplify the presentation, we
assume that each individual i is present over the period [t−i , t+i ] and is treated at date
ti . When the individual is never treated, we use the convention of an infinite treatment
date ti = {+∞}, so that the individual cannot be treated in the panel time span.16

The time dimension modifies the definition of the treatment and control groups
since the status of an individual varies over time. Consider a health event, like an acci-
dent. The control group includes the individuals who did not have an accident yet. Af-
ter that date, we may consider that the individual has moved into the treatment group.
In most studies, we will not allow for individuals to get back to the control group after
the health event, because it may have long term effect. An accident can be benign, but
it can also cause a permanent disability. A similar definition is used for chronic dis-
eases, since they are long lasting. Interestingly, this convention allows for measuring
treatment effects after several periods of time. In this approach, we distinguish the ef-
fect at the date of the treatment, from the effects several periods after. This allows for
seeing whether the health consequences are on the short run or on a longer term. Over-
all, the control group includes the workers who did not had the treatment yet. Notice
that this definition is the only one that is compatible with cross-section data, because
we do not observe the future values of the treatment in this case. With a cross section,
there should be a part of the not-treated that will be treated at a later date because the
future value of the treatment are not available at the time of the sample construction.
When the treatment has long lasting consequences, we may well consider that ti is the
starting date of the treatment rather than the treatment date. In this case, we will use:17

Wi t =
{

0 if t < ti

1 if t ≥ ti
(6)

This raises the question of which effects can be estimated. One advantage of panel
data is to allow for examining how the intensity of the effect varies over time. In this
presentation, we will focus on the ATT a periods after the treatment:

c1(a) = E(Yt (1)−Yt (0)|Wi t = 1, t = ti +a) , a ≥ 0

where ti is the treatment date. Here we insist on the dependence of the effect on the
time from treatment a. Notice that, on yearly data, the date of the treatment is not
considered as fully informative, because the health event can happen at any time be-
tween January 1st and December 31st. This is why the first difference often studied is

16One can allow randomly missing observations in [t−i , t+i ] without altering what follows.
17With this definition, notice that the convention ti = {+∞} implies Wi t = 0 ∀t .
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not for a = 0 but for a = 1. Since we observe Yt (1) for the treated after the treatment,
we will need to estimate a counterfactual representing the outcome the treated would
have had if they had not been treated. Matching and regression can be used to fill this
purpose.

3.2 Difference in differences

A popular estimator on panel data is the Difference-in-differences (henceforth, DiD)
estimator.18 We can derive it from the following panel data model:

Yi ,t (Wi ,t ) = c0 + c1(t − ti )Wi ,t +αi +βt +εi ,t (7)

where c0 is the constant term, α is an individual fixed effect, also called “correlated
effect" in the literature, β a time effect representing a flexible time trend and ε the
idiosyncratic error term, uncorrelated with the other elements of the model. Without
loss of generality, we can set E(α) = E(β) = E(ε) = 0. The treatment dummy W is defined
by (6).

In this model, it is readily checked that the ATT after a periods is given by c1(a),
with the convention c1(a) = 0, ∀a < 0:19

E(Yt (1)−Yt (0)|Wi t = 1, t = ti +a) = c1(a), a ≥ 0

There are several ways to estimate this model. A popular one is the Difference-in-
Differences estimator. This method consist in eliminating (c0,α,β) by differencing, and
to attenuate ε by averaging. First, consider the treatment date of one treated individual
i and compute the outcome variation b periods before and a periods after this date.20

We get:

Di (a,b) = Yi ,ti+a −Yi ,ti−b

= c1(a)+βti+a −βti−b +εi ,ti+a −εi ,ti−b

Second, take one not-treated that is present on the same dates and compute the before-
after outcome difference. Here, we should define what a not-treated is in a dynamic
context. One can adopt a static definition: anyone who is treated at any date. With this
convention, the not-treated belong to the set:

MS (i ) =
{

j ∈ I 2 : (t j =+∞)∩ (t−j ≤ ti −b)∩ (t+j ≥ ti +a)
}

, (8)

but one can also choose to adopt a dynamic matching convention by taking all the
individuals in I2 who did not had a treatment up to ti +a:

MD (i ) =
{

j ∈ I 2 : (t j > ti +a)∩ (t−j ≤ ti −b)∩ (t+j ≥ ti +a)
}

. (9)

Clearly, we have M S (i ) ⊆ M D (i ) since the condition (t j > ti + a) is always fulfilled for
t j = lbr ace +∞}. Once the set is chosen, we take the difference:

D j (a,b) = Y j ,ti+a −Y j ,ti−b

=βti+a −βti−b +ε j ,ti+a −ε j ,ti−b ,

18On this estimator, see Lechner (2010).
19The last condition means that there is no treatment effect before the treatment date. This convention is

compatible with the convention ti =+∞ for the not-treated.
20Standard values are a = b = 1.
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therefore the difference in differences equals:

Di (a,b)−D j (a,b) = c1(a)+εi ,ti+a −εi ,ti−b − (ε j ,ti+a −ε j ,ti−b)

and we get an unbiased estimate of the ATT:

E(Di (a,b)−D j (a,b)) = c1(a).

In practice, we compute the mean of all the double differences, so that the estima-
tor is:

ĉ1(a) = 1

I 1

∑
i∈I1

(
(Yi ,ti+a −Yi ,ti−b)− 1

M(i )

∑
j∈M(i )

(Y j ,ti+a −Y j ,ti−b)

)
. (10)

where M(i ) is either the static (8) or the dynamic (9) matching set. Even though the
previous notations insist on the dependence of the ATT on a, it obviously depends
on the reference period b. There are often robustness checks on this parameter. In
the context of program evaluations Chabé-Ferret (2015) even recommends the use of
symmetric DiD methods (with a = b).

The computation of the variance can be made by several methods. When the dif-
ferences are uncorrelated, one can use the methods adapted to cross-sectional data.
This assumption is generally valid for the terms in Yi ,ti+a −Yi ,ti−b when the individ-
uals have independent outcomes. For the terms in Y j ,ti+a −Y j ,ti−b it may also be the
case if each twin is used only once. But, in the general case, the computations involve
correlated components because the same twins are used at different dates, and we can
reasonably expect that their time series are autocorrelated. With the time dimension,
belonging to a matching group does not exclude a twin from another matching group.
A bootstrap method may fix this issue. In this case, we draw the individuals separately
in the treated and the control groups, and keep their entire time series each time.

3.3 Matching

If we use the time dimension for differencing and estimate longer run effects, we may
well match as before. Consider the evaluation of the ATT. What we need is an estimate
of the outcome of the treated if they had not been treated. Indeed, we do observe what
the treated did before to be treated thanks to the time dimension of the panel.

Then, one may think that a simple assumption like Yt+a(0) ⊥⊥W |X may be enough.
However, this would miss the possibility to eliminate the fixed effect from the outcome
equation. For this reason, we take a before-after difference Yt+a(0)−Yt−b(0) and this
explains the form of the conditional independence assumption below. Another point
will be on the matching variables. In order to avoid endogeneity issues, we may match
on lagged and time constant variables. The lag used will typically be ti −b but one may
well use a summary of past values for matching.

Exact matching. Considering an additive model, we need to take a difference in order
to eliminate the fixed effect. Then, we will look for a similar difference for the not-
treated, in order to compute a DiD estimator.21 Therefore, in order to estimate the
c1(a), we will assume:

CIA−0P : Yt+a(0)−Yt−b(0) ⊥⊥Wt |X t−b , for some b ≥ 1

21Notice that the not-treated difference is based on the treated dates.
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Under this assumption, we get:

E(Yt+a(0)−Yt−b(0)|Wt = 1, X t−b) = E(Yt+a(0)−Yt−b(0)|Wt = 0, X t−b)

and we can use the outcome variation of the not-treated in order to evaluate the out-
come variation of the treated if they had not been treated. The matching set know de-
pends on observable variables. They typically include the variables that do not vary
over time, like gender, the period of birth or the education level, denoted X 1

i , and
lagged time varying variables X 2

i ,t−b . For the treated i , we get the dynamic matching

set:22

MD (i ) =
{

j ∈ I2 : (t j > ti +a)∩ (X 1
j = X 1

i )∩ (X 2
j ,ti−b = X 2

i ,ti−b)
}

and the estimators are given by (10).

Calliper matching. Here, we just need to add constraints on the continuous vari-
ables. It may vary over time or not. Let C 1

i a continuous variables stable over time,
with calliper r1 and C 2

i ,t its time-varying equivalent with calliper r2. The matching set
becomes:

M(i )D =
{

j ∈ I2 : (t j > ti +a)∩ (X 1
j = X 1

i )∩ (X 2
j ,ti−b = X 2

i ,ti−b)

∩(|C 1
j −C 1

i | ≤ r1)∩ (|C 2
j ,ti−b −C 2

i ,ti−b | ≤ r2)
}

and the same formula as before (10) applies for the ATT estimation.

Propensity score matching. The most difficult issue in this case is, in fact, the esti-
mation of the propensity score itself. The use of panel data opens the possibility to
account for the existence of individual heterogeneity in the probability to get the treat-
ment. This is relevant when one thinks that the list of explanatory variables does not
include all the determinants of the treatment allocation. It will happens if time con-
stant variables have been used to allocate the treatment and if these variables are not
observable by the econometricians. In practice however, researchers rarely estimate a
propensity score with an individual effect. Here are some practices and suggestions:

• Pooled regressions. One just run a regression like in the cross-section case, with
adding a time varying constant term.

• Separate regressions. Each treatment year is used to estimate a binary variable
model separately. All the regression coefficients vary with each year.

• Panel data estimation. Ideally, one would like to estimate a model like:23

e(Wi t ;θ) = P(θ0
t +θ1

i +X 2
i ,t−bθ2),

where θ0
t is a time effect and θ1

i is an individual fixed effect. After the estimation,
we would use:

e(Wi t ; θ̂) = P(θ̂0
t + θ̂1

i +X 2
i ,t−b θ̂2).

22We favour the dynamic version of the matching set, with replacement, in order to keep the highest num-
ber of matches. Otherwise, including many matching variables may make the matching impossible for many
treated and bias the estimation.

23The effect of the time constant variables X 1
i is included in the θ1

i term.
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Unfortunately, the estimation of such models is complicated by several prob-
lems (Hsiao, 1996). Also notice that we need an estimate of the individual ef-
fect θ̂1

i in order to estimate the propensity score. Contributions for solving this
problem include Chamberlain (1980), Greene (2004), Fernández-Val (2009) and
Stammann et al. (2016).24

3.4 Regression

Other methods than matching may be used in order to estimate the ATT. Regression
methods naturally extend to panel data and allow for controlling unobserved hetero-
geneity. Notice that, when the model is fully saturated, regression may be even be
equivalent to matching (Angrist and Pischke, 2008).25

Data structure. The first thing to do is to select which dates of the treated are to be
included in the panel. Indeed, in most situations all the effects cannot be estimated
due to the lack of data. The number of treated available tends to decrease when we
get away from the treatment date. Therefore, we set an estimation windows k, which
represents the longest tractable period available for the estimation:

c1(a) = E(Yt+a(1)−Yt+a(0)|Wt = 1) with 0 ≤ a ≤ k

Once that k is selected, one should drop all the observations of the treated for
which t > ti +k, otherwise this case could go in the reference group and bias the esti-
mation. Another possibility is to build an aggregate dummy for all the cases t > ti +k
and compute an average effect over this interval.26 We will define k+1 treatment dum-
mies, where each dummy corresponds to a lag in the treatment effect:

Wi ,t (a) =
{

1 if t = ti +a
0 otherwise

a = 0, . . . ,k

The first dummy is Wi ,t (0) and should be thought off as an incomplete measure-
ment of the effect, unless the treatment is measured at the beginning of period and the
outcome at the end of period. When there are not enough observations for estimating
a separate effect per period, one may regroup them into intervals.

Regression on the confounding variables. We include the explanatory variables Xi t .
The model is:

Yi ,t =β0 +Xi ,tβ1 +
k∑

a=0
Wi ,t (a)

(
γr

0(a)+ (Xi ,t − X̄r )γ1(a)
)+ui ,t , (11)

24The last contribution is associated with the R package “bife", which provides estimation solutions.
25When X includes only categorical data, this is equivalent to run a regression with all the dummies and

their cross products (including for more than two variables). In practice, we may include a selection of the
cross products to approximate a fully saturated model.

26This raises the symmetric issue of whether we should keep all the other values of the treated or only
t = ti −b. We assume that we keep all the values prior to the treatment, when the support of the treatment
dates distribution ti covers all the periods available in the panel. Otherwise, a different convention may be
used.
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with γr
0(a) = γ1(a) = 0,∀a < 0. X̄r is the mean of the reference population (treated,

not-treated, total) and ui ,t the error term with a two-way fixed effects structure. We let:

ui ,t =αi +βt +εi ,t , E(α) = E(β) = E(ε) = 0.

where α and β are the individual and the time constant fixed effects, potentially corre-
lated with W and X , and ε is the idiosyncratic error term, uncorrelated with the other
components of the model. Notice that the values of the coefficients γr

0(a) depend on
the mean used for the centring of the explanatory variables (X̄r ).

For the ATT, we condition the effect on the treated population, so that we use the
reference mean X̄1. On panel data, this mean must be taken for a specific reference
year since the data values vary over time. This condition is fulfilled when the explana-
tory variables are constant over time. However, even in this case, the unbalanced na-
ture of the panel may alter the mean for different estimation lags a since the set of
treated individuals varies over time. By convention, one may take the structure in ti −1
since it is the first period before the treatment. This convention can be used when the
variables vary over time. We obtain:

E
(
Yt+a(1)−Yt+a(0)|Wi ,t = 1, Xi ,t = X̄1

)= γ1
0(a),

since X̄r = X̄1. The model (11) is a classic fixed effect model, so that we can use the
within estimator.27 It consists in applying the within transformation to all the time
varying variables and run the OLS method. The within transformation of a variable
Yi ,t , denoted Ỹi ,t , is simply its deviation from the individual mean Yi ,•:

Ỹi ,t = Yi ,t −Yi ,•, with Yi ,• = 1

Ti

∑
t∈Ti

Yi ,t , ∀(i , t ).

Notice that the within transformation of a time constant variable is zero. In order to
account for the time effects, we include time dummies in the regression:28 Let:

di ,τ =
{

1 if t = τ
0 otherwise

τ= 1, . . . ,T

We also define the treatment dummies:

W a
i ,t =

{
1 if t = ti +a
0 otherwise

a = 0, . . . ,k

so that the regression (11) becomes:

Yi ,t =β0 +Xi ,tβ1+
k∑

a=0
W a

i ,tγ
r
0(k)+

k∑
a=0

W k
i ,t (Xi ,t − X̄r )γ1(a)

+
T∑
τ=2

di ,τβτ+αi +εi ,t .

27For an presentation of panel data models, see Balestra (1996a), Balestra (1996b) and the chapter 10 in
Wooldridge (2002). The within estimator is also known as the “fixed effect" or LSDV (Least-Squares Dummy
Variables) estimator in the literature.

28One of the time dummies must be excluded from the regression in order to avoid a perfect collinearity
case. We choose to drop the first one by convention, without loss of generality.
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Here, we should notice that the time constant parts of the model will be cancelled by
the within transformation. The confounding variables are written:

Xi ,t = (X 1
i , X 2

i ,t )

so that only X 2
i ,t will remain after the within transformation. The individual effects αi

will also be cancelled but not the cross products of X 1
i by the treatment dummies, be-

cause the treatment dummies vary over time. Overall, we get the following regression,
to which we apply OLS:

Ỹi ,t = X̃ 2
i ,tβ1 +

k∑
a=0

W̃ a
i ,tγ

r
0(k)+

k∑
a=0

S̃a,r
i ,t γ1(k)+

T∑
τ=2

d̃i ,τβτ+ ε̃i ,t

with Sa,r
i ,t =W a

i ,t (Xi ,t−X̄r ). The covariance matrix of the within estimator already allows
for the autocorrelation involved by the within transformation itself, but we saw that the
treatment model suggests that the variance could differ between the treated and the
controls. The simplest solution is to account for autocorrelation and heteroskedasticity
of an unknown form, following Arellano (1987).29

When the variables are adequately centred before to take the cross products and
before to take the within transformations, the effects will be given by the estimations
of the γr

0(a) coefficients. If the centring is performed according to the mean of treated
group, we will get the ATTs at different lags. A centring according to the not-treated
group X̄0 will give the ATNs and the ATEs will be obtained when the centring is done
according to the whole population (X̄2).

Regression on the propensity score. Once the propensity score has been estimated,
it is possible to use it instead of the matching variables in a regression similar to the
previous one. The model will just include time and fixed effects, compared to the cross
section case. The covariance matrix could be obtained like in Murphy and Topel (2002)
provided that the propensity score is obtained as an M-estimator with continuous sec-
ond order derivatives. It may be more complex to derive than in the cross-section case.
The use of the bootstrap is possible, but it will be more time consuming on panel data.
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